ANALISIS INSTRUMEN PENILAIAN KEMAMPUAN PEMODELAN MATEMATIS PADA KELAS FISIKA MENGGUNAKAN RASCH MODEL

  • Desy Kumala Sari Jurusan Pendidikan Fisika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Musamus
Keywords: Mathematical Modeling, Assessment Instrument

Abstract

Mathematical modeling was the ability to formulate natural laws into mathematical form. This ability was very important to support learning in fields related to calculations such as mathematics, physics, and chemistry. This research includes development research. The product developed as an instrument of mathematical modeling ability assessment in physics class. This instrument was analyzed and adjusted for the Rasch model. The variables that were used as a reference are validity, difficulty level, and reliability. Based on the analysis results, the MNSQ INFIT value of 1.01 ± 0.18 was obtained, which means that the developed instrument was compatible with the Rasch model so that the valuation instrument was declared valid. The level of difficulty in the analysis results obtained results of 0.00 ± 0.71 which means that the questions developed were mostly in the medium category. Furthermore, the reliability of the assessment instruments developed was 0.93, which means that the reliability of the developed assessment instruments was in the excellent category. 

References

Adams, R. J., & Kho, S.-T. (1996). Acer Quest version 2.1. Camberwell: Victoria: The Australian Council for Educational Research.

Ang, K. C. (2001) “Teaching Mathematical Modeling in Singapore Schoolâ€. The Mathematics Educator, volume 6 (1).

Brotosiswoyo, B.S. (2000). Hakekat Pembelajaran Fisika di Perguruan Tinggi. Jakarta: Proyek Pengembangan Universitas Terbuka. Departemen Pendidikan Nasional.

Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. In Midwest Research to Practice Conference in Adult, Continuing, and Community

Education (pp. 82–88). https://doi.org/10.1109/PROC.1975.9792

Hambelton, R. K., & Swaminathan, H. (1985). Item Response Theory. Boston: Kluwer Inc.

Kaniawati, I. (2008). “Peningkatan kemampuan Bahasa Simbolik dan Kemampuan Pemodelan Matematika Mahasiswa Calon Guru Fisik Melalui Pembelajaran Berbasis Inquiryâ€. Jurnal Penelitian Pendidikan UPI Bandung.

Maaβ, K. (2006). “What are modelling competencies?â€. ZDM – International Journal on Mathematics Education, volume 38 (2).

Nuryadi, A, Santoso, B, Indaryanti. (2018). “Kemampuan Pemodelan Matematika Siswa dengan Strategi Scaffolding with a Solution Plan pada Materi Trigonometri di Kelas X SMAN 2 Palembangâ€. Jurnal Gantang, volume III (2).

Yusup, M. (2012). “Pendekatan Pemodelan Matematik dalam Pembelajaran Fisikaâ€. Jurnal Penelitian Pendidikan UNSRI Palembang.

Zarlis, M. (2007). Pemodelan Algoritma Gerakan Berdimensi: Satu Tinjauan Metode Komputasi dalam Fisika. Universitas Sumatra Utara.

Published
2020-03-30
How to Cite
Sari, D. K. (2020). ANALISIS INSTRUMEN PENILAIAN KEMAMPUAN PEMODELAN MATEMATIS PADA KELAS FISIKA MENGGUNAKAN RASCH MODEL. MEGA: Jurnal Pendidikan Matematika , 1(1), 47-52. https://doi.org/10.59098/mega.v1i1.182