KAJIAN KEKONVERGENAN LEMAH DI RUANG HILBERT

  • Abubakar Sidiq M.Hasbi MTs Plus Nurul Iman
Keywords: Sequence, Sequence of Weak Convergent, Dual Space

Abstract

We have the sequence , where  a norm space. We have a dual space   too is the collection of linier and continous functional from norm space  into riil number system . If for all the sequence  convergent to    and    then   convergent to . The converse of this implication is not applicable . This study aims to explain the properties that apply to the ranks of the weak convergent and explain the relationship between the strong convergent sequence and the weak convergent sequence. From several reference sources then through the review process obtained weak nature of singularity limit sequence  and relationship between the strong convergent sequence and the weak convergent sequence that if  the sequence  is strong convergent therefore the sequence it weak convergent. 

References

Anonim. a-research.upi.edu/operator/upload/s_mat_0607564_chapter3.pdf
Budhi, Wono Setya.1995. Aljabar Linear. Gramedia Pustaka Utama, Jakarta.
Debnath, Lokenath dan Piotr Mikusinski. 1998. Introduction to Hilbert Spaces with Applications. Department of Mathematics University of Central Florida Orlando : Academic Press.
Gaskill, Herbert S. dan P.P Narayanaswami. 1998. Element of Real Analysis. New Jersey : Prentice Hall.
Gozali, Sumanang Muhtar. 2010. Pengantar Analisis Fungsional. Universitas Pendidikan Indonesia, Bandung.
Karlsen, Kenneth H. 2006. Notes on Weak Convergence. (Diunduh dari http://www.uio.no/studier/emner/matnat/math/MAT4380/v06/Weakconvergence.pdf pada 12 April 2014).
Kronheimer,P.B. 2010. Weak Convergence. (Diunduh dari http://isiter.harvard.edu/fs/docs/icb.topic913185.files/Weak-Convergence.pdf pada 16 Agustus 2014).
Setiadji. 1983. Aljabar Linear 1. Universitas Gadjah Mada, Yogyakarta.
Suryawan, Herry P. 2010. Dasar – Dasar Teori Ruang Hilbert .(Diunduh dari http://herryps.files.wordpress.com/2010/10/ruang-hilbert2.pdf pada 12 April 2014).
Tuwankotta, Johan Matheus. 2012. Analisis Real. Departemen Matematika FMIPA Institut Teknologi Bandung.
William, Andre. 2010. Analisis Matriks Representatif Transformasi Linear pada Ruang vektor. Matematika-FST Universitas Nusa Cendana, Kupang.
Zaki Riyanto, M. 2008. Pengantar Analisis Real 1. Universitas Gajah Mada, Yogyakarta. (Diunduh dari http://zaki.math.web.id pada 12 April 2012).
Published
2022-05-11
How to Cite
M.Hasbi, A. S. (2022). KAJIAN KEKONVERGENAN LEMAH DI RUANG HILBERT. MEGA: Jurnal Pendidikan Matematika , 3(1), 362-370. https://doi.org/10.59098/mega.v3i1.677